Search results for " Rhodococcus."

showing 7 items of 7 documents

Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1

2018

The wide anthropogenic use of selenium compounds represents the major source of selenium pollution world- wide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/ metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32−) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32− with…

0301 basic medicineBioconversionStatic Electricity030106 microbiologychemistry.chemical_elementBioengineeringSelenious AcidSettore BIO/19 - Microbiologia GeneraleSelenium pollutionSelenium03 medical and health sciencesMinimum inhibitory concentrationchemistry.chemical_compoundNanoparticleBiosynthesisRhodococcusParticle SizeSelenite Rhodococcus aetherivorans Selenium nanoparticles Selenium nanorods Biogenic nanostructuresSelenium nanorodMolecular BiologyNanotubesbiologyBiogenic nanostructureRhodococcus aetherivoranSpectrometry X-Ray EmissionGeneral Medicinebiology.organism_classificationDynamic Light ScatteringSelenium nanoparticleBacteria AerobicNanotube030104 developmental biologychemistryBiochemistry13. Climate actionSelenious AcidSeleniteNanoparticlesMetalloidRhodococcusSeleniumRhodococcuBiotechnologyNew Biotechnology
researchProduct

Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1

2018

AbstractTellurite (TeO32−) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32− into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32−, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assem…

0301 basic medicineBioconversionchemistry.chemical_elementNanoparticlelcsh:MedicineOxyanion02 engineering and technologySettore BIO/19 - Microbiologia GeneraleArticleNanomaterialsSurface-Active Agent03 medical and health scienceschemistry.chemical_compoundSurface-Active AgentsRhodococcuslcsh:ScienceMultidisciplinaryNanotubesbiologyChemistrylcsh:RElectric Conductivitynanoparticles Rhodococcus aetherivorans tellurite resting cells021001 nanoscience & nanotechnologybiology.organism_classificationNanotube030104 developmental biologyChemical engineeringChemical stabilityNanorodlcsh:QTellurium0210 nano-technologyTelluriumRhodococcusRhodococcuScientific Reports
researchProduct

Genome and phenotype microarray analyses of rhodococcus sp. BCP1 and rhodococcus opacus R7: Genetic determinants and metabolic abilities with environ…

2015

In this paper comparative genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7 were performed. Rhodococcus sp. BCP1 was selected for its ability to grow on short-chain n-alkanes and R. opacus R7 was isolated for its ability to grow on naphthalene and on o-xylene. Results of genome comparison, includ- ing BCP1, R7, along with other Rhodococcus reference strains, showed that at least 30% of the genome of each strain presented unique sequences and only 50% of the predicted proteome was shared. To associate genomic features with metabolic capabilities of BCP1 and R7 strains, hundreds of different growth conditions were tested through Phenotype Microarray, b…

AROMATIC-COMPOUNDS; GENUS RHODOCOCCUS; HIGH-THROUGHPUT; PATHWAY; DEGRADATION; BIODEGRADATION; EQUI; PERFORMANCE; CATABOLISMGenomics RhodococcusGene predictionBacterial Proteinlcsh:MedicineBiologyGenomeXenobioticsRhodococcus opacusBacterial ProteinsRhodococcuslcsh:ScienceGenePhylogenyGeneticsComparative genomicsMultidisciplinarylcsh:RMetabolic Networks and PathwayPhenotype microarrayHigh-Throughput Nucleotide SequencingRhodococcus sp. BCP1 Rhodococcus opacus R7Genome analysisGene Expression Regulation BacterialGenomicsSequence Analysis DNAbiology.organism_classificationBIO/19 - MICROBIOLOGIA GENERALEBiodegradation EnvironmentalPhenotypeProteomeGenomiclcsh:QPhenotype MicroarrayRhodococcusMetabolic Networks and PathwaysRhodococcuhydrocarbon degradationResearch Article
researchProduct

Response of the PCB-contaminated soil bacterial community to applied bioremediation treatments

2011

For full field implementation of the bioremediation as a strategy for cleaning PCB-contaminated soils, the impact of the applied treatment on the microbial community needs to be clarified. An ideal bioremediation should have positive effects on PCB-removal but should pose no treats to the health of the soil ecosystem. Microbes, playing an essential role in maintenance of the soil ecosystem, are the first indicators of a negative impact of soil manipulation to ecosystem. A small-scale bioremediation experiment was conducted in order to get insight into behavior of the microbial community during bioremediation of PCB-contaminated soil, targeting both functional PCB-degrading community (by bph…

BIOREMEDIATION[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio]polychlorinated biphenyls; biodegradation; bioremediation; bph genes; Rhodococcus[SDE]Environmental SciencesECOSYSTEM DU SOLfood and beveragesBACTERIAL COMMUNITYTREATMENT
researchProduct

Unraveling metabolic flexibility of rhodococci in PCB transformation

2021

International audience; Even though the genetic attributes suggest presence of multiple degradation pathways, most of rhodococci are known to transform PCBs only via regular biphenyl (bph) pathway. Using GC-MS analysis, we monitored products formed during transformation of 2,4,4′-trichlorobiphenyl (PCB-28), 2,2′,5,5′-tetrachlorobiphenyl (PCB-52) and 2,4,3′-trichlorobiphenyl (PCB-25) by previously characterized PCB-degrading rhodococci Z6, T6, R2, and Z57, with the aim to explore their metabolic pleiotropy in PCB transformations. A striking number of different transformation products (TPs) carrying a phenyl ring as a substituent, both those generated as a part of the bph pathway and an array…

Environmental EngineeringStereochemistryHealth Toxicology and Mutagenesis[SDV]Life Sciences [q-bio]0208 environmental biotechnologySubstituent02 engineering and technology010501 environmental sciencesMicrobiology01 natural sciencesDioxygenaseschemistry.chemical_compoundbph pathwayBiotransformationPolychlorinated biphenylsPleiotropyDioxygenaseEnvironmental ChemistryRhodococcusBiologyOxidative decarboxylation0105 earth and related environmental sciencesBiphenylbiologyChemistrytransformation productsPublic Health Environmental and Occupational Healthmultiple pathwaysGeneral MedicineGeneral Chemistrybiology.organism_classificationPollution020801 environmental engineeringTransformation (genetics)Biodegradation EnvironmentalPolychlorinated biphenyls ; Biotransformation ; Rhodococcus ; bph pathway ; Transformation products ; Multiple pathwaysbiotransformationRhodococcus
researchProduct

Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1

2019

This is the accepted manuscript of the paper "Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1", published as final paper in "Frontiers in Microbiology Volume 10, 07 May 2019, Pages 888 https://doi.org/10.3389/fmicb.2019.00888”. Arsenic (As) ranks among the priority metal(loid)s that are of public health concern. In the environment, arsenic is present in different forms, organic or inorganic, featured by various toxicity levels. Bacteria have developed different strategies to deal with this toxicity involving different resistance genetic determinants. Bacterial strains of Rhodococcus genus, and more in general Actinobacteria p…

Microbiology (medical)arsenic resistance geneThioredoxin reductaselcsh:QR1-502chemistry.chemical_elementMicrobiologylcsh:MicrobiologyNO03 medical and health scienceschemistry.chemical_compoundR. aetherivorans BCP1Gene clusterRhodococcusArsenic030304 developmental biologyArseniteOriginal Research0303 health sciencesbiology030306 microbiologyarsenate reductionarsenic resistance genesbiology.organism_classificationActinobacteriaArsenate reductaseBiochemistrychemistryarsenic resistance genes arsenate reduction Rhodococcus R. aetherivorans BCP1 ActinobacteriaThioredoxinEnergy sourceRhodococcusRhodococcuFrontiers in Microbiology
researchProduct

Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline.

2007

Aims: To investigate the petroleum hydrocarbon (HC)-degrading potential of indigenous micro-organisms in a sandy Mediterranean coast, accidentally contaminated with petroleum-derived HCs. Methods and Results: Using culturable methods, a population of Gram-positive n-alkane degraders was detected in the contaminated soil. Five isolates, identified as one Nocardia, two Rhodococcus and two Gordonia strains, were able to degrade medium- and long-chain n-alkanes up to C36 as assessed by growth assays and gas chromatography-mass spectrometry analysis. Diverging alkane hydroxylase-encoding genes (alkB) were detected by PCR, using degenerated primers, in all the strains; multiple sequences were obt…

food.ingredientPopulationMolecular Sequence DataAlkBColony Count MicrobialGordoniaSettore BIO/19 - Microbiologia GeneraleGram-Positive BacteriaApplied Microbiology and BiotechnologyPolymerase Chain ReactionGas Chromatography-Mass SpectrometryMicrobiologyactinomycetes alkB GC-MS analysis Gordonian-alkane degradation Nocardia Rhodococcus.BioremediationfoodRNA Ribosomal 16SAlkanesSoil PollutantseducationSoil Microbiologyeducation.field_of_studyBacteriological TechniquesbiologyBase SequenceNocardiaGeneral MedicineSettore CHIM/06 - Chimica Organicabiology.organism_classificationNocardiaceaeHydrocarbonsActinobacteriaBiodegradation EnvironmentalItalybiology.proteinActinomycetalesCytochrome P-450 CYP4ARhodococcusBiotechnologyJournal of applied microbiology
researchProduct